Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in /home/www/fsev.tnuni.sk/www/revue/lang.php on line 3
This paper examines the level of data-driven marketing maturity and the use of digital intelligence tools among Slovak organizations. Based on a quantitative survey (n = 124) covering three key dimensions: marketing automation tools, customer lifecycle data management, and social media analytics, the study identifies how organizations integrate data into their strategic and operational marketing processes. The results show that while most respondents actively use online tools such as newsletters, chatbots, and AI systems, data management often remains fragmented across multiple platforms. A significant portion of organizations collect customer data throughout the entire lifecycle, but analytical utilization is still limited. Furthermore, only half of the surveyed organizations systematically analyze social media data, indicating a gap between digital infrastructure and strategic data application. The findings highlight the need for comprehensive CRM integration, advanced data analytics, and a stronger alignment between marketing intelligence and digital maturity development.
ADMA Slovakia. (2018). General part v2-3. [Online]. [cit. 2025-11-01]. Available at: https://adma.sk/vzdelavanie/prieskum-digitalnej-zrelosti-2-3/.
Boufim, M. & Barka, H. (2021). Digital Marketing: Five Stages Maturity Model for Digital Marketing Strategy Implementation. International Journal of Marketing Studies, vol. 13, iss. 3, pp. 45–59. DOI: https://doi.org/10.5281/zenodo.5578706.
Cao, G., Duan, Y. & El Banna, A. A. (2019). A dynamic capability view of marketing analytics: Evidence from UK firms. Industrial Marketing Management, vol. 78, pp. 141–152. DOI: https://doi.org/10.1016/j.indmarman.2018.08.002.
Grandhi, B., Saleem, K. & Singh, R. (2020). Data-driven marketing for growth and profitability. EuroMed Journal of Business, vol. 15, iss. 3, pp. 250–270. DOI: https://doi.org/10.1108/EMJB-09-2018-0054.
Johnson, D. S., Friend, S. B. & Lee, H. S. (2019). The marketing organization’s journey to become data-driven. Journal of Research in Interactive Marketing, vol. 13, iss. 2, pp. 162–182. DOI: https://doi.org/10.1108/JRIM-12-2018-0157.
Johnson, D. S., Muzellec, L. & Zahay, D. (2021). Implementing Big Data Analytics in Marketing Departments: Mixing Organic and Administered Approaches to Increase Data-Driven Decision Making. Informatics, vol. 8, iss. 4, pp. 1–20. DOI: https://doi.org/10.3390/informatics8040066.
Kravets, O., Koberniuk, S. & Datsyuk, A. (2025). AI-Powered Digital Marketing: Enhancing Customer Behaviour Predictions. European Journal of Sustainable Development, vol. 14, iss. 1, pp. 221–236. DOI: https://doi.org/10.14207/ejsd.2025.v14n2p84.
Miklošík, A. & Zak, Š. (2019). Towards the Adoption of Machine Learning-Based Analytical Tools in Digital Marketing. IEEE Access, vol. 7, pp. 110113–110127. DOI: 10.1109/ACCESS.2019.2924425.
Muñoz, L. & Avila, O. (2024). Digital capabilities assessment for supporting the transformation of the customer experience. arXiv preprint.
OECD. (2024). OECD Digital Economy Outlook 2024, Volume 2. [online]. [cit. 2025-11-01]. Available at: https://www.oecd.org/en/publications/oecd-digital-economy-outlook-2024-volume-2_3adf705b-en.html.
Ondrušová, Z., Šimák, L. & Benko, P. (2023). Digital Transformation and Digital Readiness of Businesses in Slovakia. Communications – Scientific Letters of the University of Žilina, vol. 25, iss. 4, pp. 45–58. Available at: https://repo.umb.sk/items/c066d8f5-a807-4a6e-8082-950241da7434.
Rostek, K. & Zawistowska, A. (2019). Marketing automation in the process of communication on the B2B market. Informatyka Ekonomiczna, vol. 1, iss. 53, pp. 82–95. DOI: 10.15611/ie.2019.1.06.
Semerádová, T. & Weinlich, P. (2020). Readiness of Small and Medium Enterprises for Marketing Automation. ACC Journal, vol. 26, iss. 2, pp. 48–60. DOI: DOI: 10.15240/tul/004/2020-2-005.
Zumstein, D., Jörger, D. & Zelic, A. (2022). Benefits, Challenges and Future Developments in Digital Analytics in German-Speaking Countries: An Empirical Analysis. Applied Marketing Analytics, vol. 8, iss. 2, pp. 101–115. DOI: https://doi.org/10.69554/UVCF5193.