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Abstract 
  
This research investigates the complex dynamics of regional development within the European Union by performing a 
cluster analysis of the EU Regional Competitiveness Index (RCI 2.0) across 234 NUTS-2 regions. The central issue 
addressed is the "Capital City Bias" and the challenge of balancing industrial productivity with the quality of life for 
residents. Furthermore, the study explores the "middle-income trap," a problematic state where regions transitioning 
through developmental stages may face a policy vacuum if basic infrastructure is neglected before innovation 
ecosystems are fully mature. The primary objective is to identify hidden patterns and specific similarities within 
regional groupings to move beyond simple rankings and better understand the unique developmental needs of different 
clusters. To achieve this, the study utilizes the k-means++ clustering algorithm, an advanced iteration of Lloyd’s 
algorithm that employs a heuristic for more effective centroid seeding to improve both running time and solution 
quality. The research focuses on the three core sub-indices of the RCI: Basic (including institutions and 
infrastructure), Efficiency (labor market and higher education), and Innovation (technological readiness and business 
sophistication). To determine the optimal number of clusters for each sub-index, the Calinski-Harabasz criterion 
(variance ratio criterion) is applied, ensuring that the resulting data partitions are both dense and well-separated. 
Furthermore, Non-negative Matrix Factorization (NNMF) is employed as a sophisticated visualization tool, allowing 
for the transformation of multidimensional regional data into a two-dimensional plane while preserving essential 
Euclidean norms. The results demonstrate a persistent geographical divide in Europe, characterized by a stark 
"elitism" in capital cities compared to their stagnating peripheries, providing critical insights for the tailoring of future 
Cohesion Policies. 
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INTRODUCTION 

Since 2010, the EU Regional Competitiveness 
Index (RCI) has been measuring the major 
factors of competitiveness for all the NUTS-2 
level regions across the European Union. The 
Index measures, with a rich set of indicators, the 
ability of a region to offer an attractive 
environment for firms and residents to live and 
work. Since the 2022 edition of the RCI uses an 
updated methodological framework, to facilitate 
comparison over time. In addition, starting from 
the original data used in 2016 and 2019, the 
scores have been re-calculated using the new 
methodology, labelled as RCI 2.0, 2016 edition, 
and RCI 2.0, 2019 edition. The resulting 
rankings do not replace the RCI rankings 
published in 2016 and 2019, produced with the 
old methodology. The RCI is composed of three 

sub-indices: Basic, Efficiency and Innovation, 
and of 11 pillars that describe the different 
aspects of competitiveness. 

The Basic sub-index refers to the key basic 
drivers of all types of economies. It identifies the 
main issues that are necessary to develop 
regional competitiveness and includes five 
pillars: (1) The Institutions, (2) The 
Macroeconomic Stability, (3) The 
Infrastructures, (4) The Health and (5) The Basic 
Education. The Efficiency sub-index includes 
three pillars: (6) Higher education, training and 
lifelong learning, (7) Labor market efficiency 
and (8) Market size. Lastly, the Innovation sub-
index includes the three pillars that are the 
drivers of improvement at the most advanced 
stage of economic development: (9) 
Technological readiness, (10) Business 
sophistication and (11) Innovation. The final 
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RCI 2.0 is weighted arithmetic mean of these 
three sub-indices, which are weighed differently 
per development stage (gross domestic product 
(GDP) per head in purchasing power standards 

(PPS) expressed as an index with the EU-27 
average set to 100), as shown in Table 1. For 
more details of each pillar or others information 
about the methodology see (Dijkstra 2023). 

 

Table 1: Table of sub-indexes weights of the RCI 

Stage of Development 
Sub-index weight 

Basic Efficiency Innovation 

GDP index1 < 75  30%  50% 20% 

GDP index1 ∈ [75,100] 25% 50% 25% 

GDP index1 > 75 20% 50% 30% 

Source: author’s processing 

1 GDP/ head (PPS), Index EU-27 = 100. 
 
In our work we try to find some specific 
similarities in each type of sub-index which are 
other than those in other groups. In other words, 
we do cluster analysis of every sub-index in 
relation to NUTS-2 regions of the EU. Cluster 
analysis involves applying clustering algorithms 
with the goal of finding hidden patterns or 
groupings in a data set. It is therefore used 
frequently in exploration data analysis but is also 
used for anomaly detection and preprocessing 
for supervised learning. Clustering algorithms 
form groupings in such a way that data within 
a group (or cluster) has a higher measure of 
similarity than data in any other cluster. Various 
similarity measures can be used, including 
Euclidean, probabilistic, cosine distance, and 
correlation. Most unsupervised learning methods 
are a form of cluster analysis. Clustering 
algorithms fall into two broad groups: (1) Hard 
clustering, where each data point belongs to only 
one cluster, such as the popular k-means method 
and (2) Soft clustering, where each data point 
can belong to more than one cluster, such as in 
Gaussian mixture models. Examples include 
phonemes in speech, which can be modeled as 
a combination of multiple base sounds, and 
genes that can be involved in multiple biological 
processes. We use k-means clustering, or 
Lloyd’s algorithm (Lloyd 1982), which is an 
iterative, data-partitioning algorithm that assigns 
n observations to exactly one of  clusters 
defined by centroids, where  is chosen before 
the algorithm starts. We use an improved version 

of this algorithm called the k-means++ 
algorithm. The k-means++ algorithm uses 
a heuristic to find centroid seeds for k-means 
clustering. According to Arthur and Vassilvitskii 
(Arthur and Vassilvitskii 2007), k-means++ 
improves the running time of Lloyd’s algorithm, 
and the quality of the final solution. 

1 LITERATURE OVERVIEW 

The literature on the EU Regional 
Competitiveness Index (RCI) reveals a central 
"problematic": the challenge of reconciling 
administrative boundaries with functional 
economic realities while balancing social well-
being against industrial productivity. Academic 
debate in this area is primarily structured around 
three core tensions. 

A recurring theme in the literature is the dual 
nature of regional competitiveness. While 
traditional indices (like the WEF’s Global 
Competitiveness Index) focus on business 
productivity, the RCI problem lies in its attempt 
to measure a region’s attractiveness for both 
firms and residents (Annoni & Dijkstra, 2019). 
This creates a theoretical friction: policies that 
benefit firms (e.g., lower corporate taxes or 
flexible labor markets) may sometimes conflict 
with the "quality of life" metrics (e.g., high 
social protection and environmental standards) 
that make a region attractive to residents. 

Scholars frequently highlight the "Modifiable 
Areal Unit Problem" (MAUP) as a significant 
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hurdle in RCI research. The index utilizes NUTS 
2 administrative regions, which are often 
criticized for being "artificial" constructions that 
do not reflect actual labor markets or commuting 
patterns. Literature points out that this can lead 
to the "Capital City Bias", where a capital's high 
performance masks deep-seated stagnation in its 
immediate rural periphery, complicating the 
delivery of effective Cohesion Policy. 

The RCI employs a unique methodology where 
pillars are weighed differently based on 
a region's stage of development (GDP per 
capita). The problematic identified here is the 
potential for a "middle-income trap." Literature 
(Dijkstra et al., 2023) suggests that as regions 
transition from "Basic" to "Efficiency" and 
"Innovation" stages, the shift in priorities can 
lead to a policy vacuum where basic 
infrastructure is neglected before innovation 
ecosystems are fully mature. 

2 METHODOLOGY 

The main method used in our work is cluster 
analysis which refers to a family of algorithms 
and tasks rather than one specific algorithm. It 
can be achieved by various algorithms that differ 
significantly in their understanding of what 
constitutes a cluster and how to efficiently find 
them. Popular notions of clusters include groups 
with small distances between cluster members, 
dense areas of the data space, intervals or 
particular statistical distributions. Clustering can 
therefore be formulated as a multi-objective 
optimization problem. The appropriate clustering 
algorithm and parameter settings (including 
parameters such as the distance function to use, 
a density threshold or the number of expected 
clusters) depend on the individual data set and 
intended use of the results. It is an iterative 
process of knowledge discovery or interactive 
multi-objective optimization that involves trial 
and failure. There is a common denominator: 
a group of data objects, which is one of the 
reasons why there are so many clustering 
algorithms. 

k-means clustering is a method of vector 
quantization, originally from signal processing, 
that aims to partition  observations into  
clusters in which each observation belongs to the 
cluster with the nearest mean (cluster centers or 
cluster centroid), serving as a prototype of the 
cluster. This results in a partitioning of the data 

space into Voronoi cells (partition of a plane into 
regions close to each of a given set of objects). 
k-means clustering minimizes within-cluster 
variances (squared Euclidean distances), but not 
regular Euclidean distances, which would be the 
more difficult Weber problem: the mean 
optimizes squared errors, whereas only the 
geometric median minimizes Euclidean 
distances. For instance, better Euclidean 
solutions can be found using k-medians and k-
medoids. The problem is computationally 
difficult (nondeterministic polynomial - hard); 
however, efficient heuristic algorithms converge 
quickly to a local optimum. 

Given a set of observations , 
where each observation is a -dimensional real 
vector, k-means clustering aims to partition the  
observations into  (≤ ) sets  
so as to minimize the within-cluster sum of 
squares (WCSS) (i.e. variance). Formally, the 
objective is to find 

 (1) 

where  is the  norm (Euclidean distance) 
between the two vectors and  is the mean (also 
called centroid) of points in , i.e. 

,                                           (2) 

where  is the size of . This is equivalent to 
minimizing the pairwise squared deviations of 
points in the same cluster 

    (3) 

The equivalence can be deduced from identity 

 (4) 

Since the total variance is constant, this is 
equivalent to maximizing the sum of squared 
deviations between points in different clusters 
(between-cluster sum of squares, BCSS) 
(Kriegel 2017). 

k-means clustering, or Lloyd’s algorithm, is an 
iterative, data-partitioning algorithm that assigns 

 observations to exactly one of  clusters 
defined by centroids, where  is chosen before 
the algorithm starts. The algorithm proceeds as 
follows: 
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 Choose k initial cluster centers 
(centroid). For example, choose  observations 
at random or use the k-means ++ algorithm for 
cluster center initialization (the default). 

 Compute point-to-cluster-centroid 
distances of all observations to each centroid 
 There are two ways to proceed: (1) 
Batch update - assign each observation to the 
cluster with the closest centroid, (2) Online 
update - individually assign observations to 
a different centroid if the reassignment decreases 
the sum of the within-cluster, sum-of-squares 
point-to-cluster-centroid distances. 
 Compute the average of the 
observations in each cluster to obtain  new 
centroid locations. 
 Repeat steps 2 through 4 until cluster 
assignments do not change, or the maximum 
number of iterations is reached. 
k-means++ improves the running time of 
Lloyd’s algorithm, and the quality of the final 
solution. The k-means++ algorithm chooses 
seeds as follows, assuming the number of 
clusters is . 

 Select an observation uniformly at 
random from the data set, . The chosen 
observation is the first centroid and is denoted 

. 

 Compute distances from each 
observation to . Denote the distance between 

 and the observation  as . 

 Select the next centroid,  at random 
from  with probability 

.   (5) 

 To choose center , we compute the 
distances from each observation to each centroid 
and assign each observation to its closest 
centroid. For each  and 

, select centroid  at random from 
 with probability 

,   (6) 

where  is the set of all observations closest to 

centroid  and  belongs to .  

 Repeat step 4 until k centroids are 
chosen. 

The algorithms use a two-phase iterative 
algorithm to minimize the sum of point-to-
centroid distances, summed over all  clusters. I. 
This first phase uses batch updates, where each 
iteration consists of reassigning points to their 
nearest cluster centroid, all at once, followed by 
recalculation of cluster centroids. This phase 
occasionally does not converge with a solution 
that is a local minimum. That is, a partition of 
the data where moving any single point to 
a different cluster increases the total sum of 
distances. This is more likely for small data sets. 
The batch phase is fast, but potentially only 
approximates a solution as a starting point for 
the second phase. This second phase uses online 
updates, where points are individually reassigned 
if doing so reduces the sum of distances, and 
cluster centroids are recomputed after each 
reassignment. Each iteration during this phase 
consists of one passing through all the points. 
This phase converges to a local minimum, 
although there might be other local minimums 
with lower total sum of distances. In general, 
finding the global minimum is solved by an 
exhaustive choice of starting points, but using 
several replicates with random starting points 
typically results in a solution that is a global 
minimum 

An important task in clustering is the correct 
determination of the number of clusters. This 
ensures that the data is properly and efficiently 
divided. The correct choice of k is often 
ambiguous, with interpretations depending on 
the shape and scale of the distribution of points 
in a data set and the desired clustering resolution 
of the user. In addition, increasing k without 
penalty will always reduce the amount of error in 
the resulting clustering, to the extreme case of 
zero error if each data point is considered its own 
cluster (i.e., when k equals the number of data 
points, n). Intuitively then, the optimal choice of 
k will strike a balance between maximum 
compression of the data using a single cluster, 
and maximum accuracy by assigning each data 
point to its own cluster. If an appropriate value 
of k is not apparent from prior knowledge of the 
properties of the data set, it must be chosen 
somehow. There are several categories of 
methods for making this decision. We use the 
Caliński-Harabasz criterion. This criterion is 
sometimes called the variance ratio criterion 
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(VRC). The Caliński-Harabasz index is defined 
as 

,   (7) 

 where  is the overall between-
cluster variance,  is the overall within-
cluster variance k is the number of clusters, and 
n is the number of observations. The overall 
between-cluster variance  is defined as 

,  (8) 

 where  is the number of clusters,  is 
the number of observations in -th cluster,  is 
the centroid of -th cluster,  is the overall mean 
of the sample data. The overall within-cluster 
variance  is defined 

,  (9) 

 where k is the number of clusters,  is 
a data point,  is the -th cluster,  is the 
centroid of -th cluster. Well-defined clusters 
have a large between-cluster variance ( ) and 
a small within-cluster variance ( ). The larger 
the  ratio, the better the data partition. To 
determine the optimal number of clusters, 
maximize  with respect to . The optimal 
number of clusters corresponds to the solution 
with the highest Caliński-Harabasz index value 
(Caliński & Harabasz 1974). 

Non-negative matrix factorization (NNMF), 
also non-negative matrix approximation is 
a group of algorithms in multivariate analysis 
and linear algebra where a matrix  is factorized 
into (usually) two matrices  and , with the 
property that all three matrices have no negative 
elements. This non-negativity makes the 
resulting matrices easier to inspect. The 
factorization uses an iterative algorithm starting 
with random initial values for  and . Because 
the root means square residual  might have 
local minima, repeated factorizations might yield 
different  and . Sometimes the algorithm 
converges to a solution of lower rank than , 
which can indicate that the result is not optimal. 
More detailed information can be seen in 
(Michael 2007). 

3 FINDINGS 

The results of the cluster analysis are divided 
into three subcategories according to individual 
subindexes, i.e. Basic, Efficiency and Innovation 
according to NUTS-2 regions. 

Basic sub-index cluster analysis of EU countries 

The Basic sub-index includes five pillars: the 
institutions, the macroeconomic stability, the 
infrastructures, the health and the basic 
education. That means we must analyse 234 
vectors (number NUTS-2 regions) of dimension 
5 (number of Basic sub-index pillars). First, we 
must find the best number of clusters for this 
analysis. Using MatLab function evalclusters, 
which creates a clustering evaluation object 
containing data used to evaluate the optimal 
number of data clusters, we find that the best 
number of clusters is 2 (see Figure 1). Higher 
value of Caliński-Harabasz index means the 
clusters are dense and well separated, although 
there is no “acceptable” cut-off value. We need 
to choose that solution which gives a peak or at 
least an abrupt elbow on the line plot of 
Caliński-Harabasz indices. The choice of only 
two clusters is also suitable considering the 
dendrogram (see Figure 2) where we can see 
intermixture of clusters. In the next step (using 
MatLab function kmeans), we sorted the data 
into these two clusters and found their centroids. 

The centroids characterizing the values of 
institutions, macroeconomic stability, 
infrastructures, health and basic education are 
this four points 

 and 
. 

For better further visualization, we chose 
Nonnegative matrix factorization (NNMF) to 
display the 5-dimensional space in the plane (see 
Figure 3.). We see at least a separation of 
clusters, but a clear division into two groups with 
better and worse ratings is evident. This division 
is also visually obvious at map of EU (Figure 4), 
where we can see division of the NUTS-2 
regions of EU with dividing Europe by diagonal 
running from south-west to north-east. Except 
for the region of Central Bohemia and Prague 
itself, the entire eastern block is part of the 
cluster together with Greece and Italy, part of the 
Iberian Peninsula. 

 
Figure 1: Line-plot of Caliński-Harabasz values vs number of clusters for the Basic sub-index dataset of NUTS-2 

regions 
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1  Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO)  

2  

3 Figure 2: Dendrogram for the Basic sub-index dataset of NUTS-2 regions 

 
4 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 

 

 

Figure 3: NNMF visualization for the Basic sub-index dataset of NUTS-2 regions 
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5 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 

 

Figure 4: The NUTS-2 maps of the Basic sub-index dataset for two clusters  

 

 
6 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 
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Efficiency sub-index cluster analysis of EU 
countries 

The Efficiency sub-index includes three pillars: 
higher education, training and lifelong learning, 

the labor market efficiency and the market size. 
So, we have 234 vectors of dimension 3. If we 
evaluate the number of clusters, we obtain the 
number of 4 clusters (see Figure 5 also Figure 6). 

 

Figure 5: Line-plot of Caliński-Harabasz values vs number of clusters for the Efficiency sub-index dataset of NUTS-2 
regions 

 
7 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 

Figure 6: Dendrogram for the Efficiency sub-index dataset of NUTS-2 regions 

 
8 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 

 

The centroids of these four clusters, which 
represent lifelong learning, the labor market and 
the market size, are 

, 
, 

 and 
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. If we transform 
the obtained clusters into two-dimensional 

vectors, the visualization can be seen on the 
NNMF visualization (Figure 7).  

 

Figure 7: NNMF visualization for the Efficiency sub-index dataset of NUTS-2 regions 

 
9 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO)). 

After drawing the clusters on the geographical 
map, the categorization according to the regional 
development in the north-south and east-west 
direction is obvious. And there is also a strong 

elitism around the developed capital cities and 
their agglomerations, or cen-ters such as the 
Ruhr, northern Italy, or the BENELUX countries 
(Figure 8). 

 

Figure 8: The NUTS-2 maps of the Efficiency sub-index dataset for four clusters 

 
10 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 
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Innovation sub-index cluster analysis of EU 
countries 

Innovation sub-index includes the three pillars 
that are the drivers of improvement at the most 
advanced stage of economic development: 
technological readiness, business sophistication 
and innovation. That means we have also 234 

vectors of dimension 3. If we draw the 
dependence between the Caliński-Harabasz 
values and the number of clusters, we see that 
the highest value is for the basic division into 
two clusters, but considering the elbow rule, we 
can also choose the number of clusters 4 (see 
Figure 9). 

 

Figure 9: Line-plot of Caliński-Harabasz values vs number of clusters for the Innovation sub-index dataset of NUTS-2 
regions 

 
11 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO)). 

From the dendrogram also can be also seen that the best way to analyze this dataset is for number of 
clusters 2 or 4 (see Figure 10). 

Figure 10: Dendrogram for the Innovation sub-index dataset of NUTS-2 regions 

 
12 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 

Using the MatLab function kmeans we get four 
clusters with their centroids (representing 

technological readiness, business sophistication 
and innovation)   
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, 
 and 

. Using the 
Nonnegative matrix factorization, we can 

visualize the resulted clustering in two-
dimensional way (Figure 11). And now it is clear 
that the choice of four clusters is better way than 
only dividing the dataset into two clusters. 

 

Figure 11: NNMF visualization for the Innovation sub-index dataset of NUTS-2 regions 

 
13 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 

The map of NUTS-2 region according to our 
obtained clustering indexation for Innovation 
pillars is very similar to the previous one for 
Efficiency pillars. It means there can been seen 
all the stereotypes about the rate of 
innovativeness, e.g. more innovativeness western 

Europe in contrast to the east Europe (Romania, 
Bulgaria and easter regions of Poland), typical 
centers of innovations as (BENELUX, Ruhr, the 
capitals with their surroundings). Also, the 
difference between the south and north of 
Europe can be seen. 

 

Figure 12: The NUTS-2 maps of the Innovations sub-index dataset for four clusters 

 
14 Source: author’s processing from data of the European Commission's Directorate-General for Regional and 

Urban Policy (DG REGIO) 
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4 DISCUSSION  

In our article, we analyzed individual 
assessments of the level of competitiveness of 
EU regions (NUTS-2) according to three basic 
sub-indexes (Basic, Efficiency, Innovation). As 
a starting point, we use the EU Regional 
Competitiveness Index (RCI), whose individual 
components (evaluation indices) we evaluated 
using cluster analysis. We com-pared the 
obtained categorizations with the regional 
characteristics of the given regional territorial 
unit. 

The cluster analysis was conducted within the 
MATLAB environment, utilizing the advanced 
k-means++ algorithm. In addition to standard 
clustering techniques, a notable feature of this 
study is the application of Non-negative Matrix 
Factorization (NNMF) for data visualization. 
This method facilitates the transformation of 
multidimensional matrices into a two-
dimensional space while preserving the 
structural relationships between entities, thereby 
significantly enhancing the clarity of the results. 

CONCLUSION  

This study successfully applied advanced cluster 
analysis to the EU Regional Competitiveness 
Index (RCI 2.0) to identify patterns of economic 
development across 234 NUTS-2 regions. By 
employing the k-means++ algorithm and 
validating results through the Caliński-Harabasz 
criterion, the research moved beyond simple 
rankings to reveal distinct regional groupings 
based on the three core sub-indices: Basic, 
Efficiency, and Innovation. 

The analysis of the Basic sub-index revealed 
a fundamental geographical divide in Europe, 
separating more developed regions from an 
"eastern bloc" that includes Greece, Italy, and 
parts of the Iberian Peninsula. In contrast, the 
Efficiency and Innovation sub-indices 
highlighted a more complex four-cluster 
structure. These findings underscore a significant 
"elitism" surrounding capital cities and major 
industrial hubs like the Ruhr and BENELUX 
countries, which consistently outperform their 
peripheries. 

Methodologically, the use of Non-negative 
Matrix Factorization (NNMF) proved to be 
a highly effective tool for visualizing 
multidimensional competitiveness data in a two-
dimensional space while preserving essential 
Euclidean norms. Ultimately, these results 
confirm that regional competitiveness in the EU 
remains characterized by persistent north-south 
and east-west disparities, as well as a stark 
contrast between innovative urban centers and 
stagnant rural regions. These insights are critical 
for tailoring future Cohesion Policies to the 
specific developmental needs of each identified 
regional cluster. 
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