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CLUSTER ANALYSIS OF THE EU REGIONAL COMPETITIVENESS INDEX OF
NUTS-2 REGIONS
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Abstract

This research investigates the complex dynamics of regional development within the European Union by performing a
cluster analysis of the EU Regional Competitiveness Index (RCI 2.0) across 234 NUTS-2 regions. The central issue
addressed is the "Capital City Bias" and the challenge of balancing industrial productivity with the quality of life for
residents. Furthermore, the study explores the "middle-income trap," a problematic state where regions transitioning
through developmental stages may face a policy vacuum if basic infrastructure is neglected before innovation
ecosystems are fully mature. The primary objective is to identify hidden patterns and specific similarities within
regional groupings to move beyond simple rankings and better understand the unique developmental needs of different
clusters. To achieve this, the study utilizes the k-means++ clustering algorithm, an advanced iteration of Lloyd’s
algorithm that employs a heuristic for more effective centroid seeding to improve both running time and solution
quality. The research focuses on the three core sub-indices of the RCI: Basic (including institutions and
infrastructure), Efficiency (labor market and higher education), and Innovation (technological readiness and business
sophistication). To determine the optimal number of clusters for each sub-index, the Calinski-Harabasz criterion
(variance ratio criterion) is applied, ensuring that the resulting data partitions are both dense and well-separated.
Furthermore, Non-negative Matrix Factorization (NNMF) is employed as a sophisticated visualization tool, allowing
for the transformation of multidimensional regional data into a two-dimensional plane while preserving essential
Euclidean norms. The results demonstrate a persistent geographical divide in Europe, characterized by a stark
"elitism" in capital cities compared to their stagnating peripheries, providing critical insights for the tailoring of future
Cohesion Policies.
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sub-indices: Basic, Efficiency and Innovation,
INTRODUCTION and of 11 pillars that describe the different
Since 2010, the EU Regional Competitiveness aspects of competitiveness.
Index (RCI) has been measuring the major
factors of competitiveness for all the NUTS-2
level regions across the European Union. The
Index measures, with a rich set of indicators, the
ability of aregion to offer an attractive
environment for firms and residents to live and
work. Since the 2022 edition of the RCI uses an
updated methodological framework, to facilitate
comparison over time. In addition, starting from
the original data used in 2016 and 2019, the
scores have been re-calculated using the new
methodology, labelled as RCI 2.0, 2016 edition,
and RCI 2.0, 2019 edition. The resulting
rankings do not replace the RCI rankings
published in 2016 and 2019, produced with the
old methodology. The RCI is composed of three

The Basic sub-index refers to the key basic
drivers of all types of economies. It identifies the
main issues that are necessary to develop
regional competitiveness and includes five
pillars: (1) The Institutions, (2) The
Macroeconomic Stability, 3) The
Infrastructures, (4) The Health and (5) The Basic
Education. The Efficiency sub-index includes
three pillars: (6) Higher education, training and
lifelong learning, (7) Labor market efficiency
and (8) Market size. Lastly, the Innovation sub-
index includes the three pillars that are the
drivers of improvement at the most advanced
stage of economic development: (9)
Technological — readiness,  (10)  Business
sophistication and (11) Innovation. The final
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RCI 2.0 is weighted arithmetic mean of these
three sub-indices, which are weighed differently
per development stage (gross domestic product
(GDP) per head in purchasing power standards

(PPS) expressed as an index with the EU-27
average set to 100), as shown in Table 1. For
more details of each pillar or others information
about the methodology see (Dijkstra 2023).

Table 1: Table of sub-indexes weights of the RCI

Sub-index weight
Stage of Development
Basic Efficiency Innovation
GDP index' <75 30% 50% 20%
GDP index! € [75,100] 25% 50% 259,
GDP index! > 75 20% 50% 30%

Source: author’s processing

! GDP/ head (PPS), Index EU-27 = 100.

In our work we try to find some specific
similarities in each type of sub-index which are
other than those in other groups. In other words,
we do cluster analysis of every sub-index in
relation to NUTS-2 regions of the EU. Cluster
analysis involves applying clustering algorithms
with the goal of finding hidden patterns or
groupings in adata set. It is therefore used
frequently in exploration data analysis but is also
used for anomaly detection and preprocessing
for supervised learning. Clustering algorithms
form groupings in such a way that data within
agroup (or cluster) has ahigher measure of
similarity than data in any other cluster. Various
similarity measures can be used, including
Euclidean, probabilistic, cosine distance, and
correlation. Most unsupervised learning methods
are aform of cluster analysis. Clustering
algorithms fall into two broad groups: (1) Hard
clustering, where each data point belongs to only
one cluster, such as the popular k-means method
and (2) Soft clustering, where each data point
can belong to more than one cluster, such as in
Gaussian mixture models. Examples include
phonemes in speech, which can be modeled as
a combination of multiple base sounds, and
genes that can be involved in multiple biological
processes. We use k-means clustering, or
Lloyd’s algorithm (Lloyd 1982), which is an
iterative, data-partitioning algorithm that assigns
n observations to exactly one of [ clusters
defined by centroids, where k is chosen before
the algorithm starts. We use an improved version

of this algorithm called the k-means++
algorithm. The k-means++ algorithm uses
a heuristic to find centroid seeds for k-means
clustering. According to Arthur and Vassilvitskii
(Arthur and Vassilvitskii 2007), k-means++
improves the running time of Lloyd’s algorithm,
and the quality of the final solution.

1 LITERATURE OVERVIEW

The literature on the EU  Regional
Competitiveness Index (RCI) reveals a central
"problematic": the challenge of reconciling
administrative  boundaries with  functional
economic realities while balancing social well-
being against industrial productivity. Academic
debate in this area is primarily structured around
three core tensions.

A recurring theme in the literature is the dual
nature of regional competitiveness. While
traditional indices (like the WEF’s Global
Competitiveness Index) focus on business
productivity, the RCI problem lies in its attempt
to measure aregion’s attractiveness for both
firms and residents (Annoni & Dijkstra, 2019).
This creates a theoretical friction: policies that
benefit firms (e.g., lower corporate taxes or
flexible labor markets) may sometimes conflict
with the "quality of life" metrics (e.g., high
social protection and environmental standards)
that make a region attractive to residents.

Scholars frequently highlight the "Modifiable
Areal Unit Problem" (MAUP) as a significant
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hurdle in RCI research. The index utilizes NUTS
2 administrative regions, which are often
criticized for being "artificial" constructions that
do not reflect actual labor markets or commuting
patterns. Literature points out that this can lead
to the "Capital City Bias", where a capital's high
performance masks deep-seated stagnation in its
immediate rural periphery, complicating the
delivery of effective Cohesion Policy.

The RCI employs a unique methodology where
pillars are weighed differently based on
aregion's stage of development (GDP per
capita). The problematic identified here is the
potential for a "middle-income trap." Literature
(Dijkstra et al., 2023) suggests that as regions
transition from "Basic" to "Efficiency" and
"Innovation" stages, the shift in priorities can
lead to apolicy vacuum where basic
infrastructure is neglected before innovation
ecosystems are fully mature.

2 METHODOLOGY

The main method used in our work is cluster
analysis which refers to a family of algorithms
and tasks rather than one specific algorithm. It
can be achieved by various algorithms that differ
significantly in their understanding of what
constitutes a cluster and how to efficiently find
them. Popular notions of clusters include groups
with small distances between cluster members,
dense areas of the data space, intervals or
particular statistical distributions. Clustering can
therefore be formulated as a multi-objective
optimization problem. The appropriate clustering
algorithm and parameter settings (including
parameters such as the distance function to use,
a density threshold or the number of expected
clusters) depend on the individual data set and
intended use of the results. It is an iterative
process of knowledge discovery or interactive
multi-objective optimization that involves trial
and failure. There is a common denominator:
agroup of data objects, which is one of the
reasons why there are so many clustering
algorithms.

k-means clustering is amethod of vector
quantization, originally from signal processing,
that aims to partition m observations into &
clusters in which each observation belongs to the
cluster with the nearest mean (cluster centers or
cluster centroid), serving as a prototype of the
cluster. This results in a partitioning of the data

space into Voronoi cells (partition of a plane into
regions close to each of a given set of objects).
k-means clustering minimizes within-cluster
variances (squared Euclidean distances), but not
regular Euclidean distances, which would be the
more difficult Weber problem: the mean
optimizes squared errors, whereas only the
geometric  median  minimizes  Euclidean
distances. For instance, better FEuclidean
solutions can be found using k-medians and k-
medoids. The problem is computationally
difficult (nondeterministic polynomial - hard);
however, efficient heuristic algorithms converge
quickly to a local optimum.

Given aset of observations (%, ...x,),
where each observation is a d-dimensional real
vector, k-means clustering aims to partition the n
observations into k (< n) sets § = (5,, 5,,.... 5]
so as to minimize the within-cluster sum of
squares (WCSS) (i.e. variance). Formally, the
objective is to find

argming EF:LEIE.‘\'["x —clF =
argming EF=L|.5',- |Var 5;

(M

where |[...|l is the L norm (Euclidean distance)
between the two vectors and €; is the mean (also
called centroid) of points in §;, i.e.

Cf = ﬁExE:{i x, (2)

where |5;] is the size of ;. This is equivalent to
minimizing the pairwise squared deviations of
points in the same cluster

argming Y., yes; I — ylI° (3)
The equivalence can be deduced from identity

- i ”
1531 ExEn‘[”x -Gl = a Ex}'En‘["x —-yl= @)
Since the total variance is constant, this is
equivalent to maximizing the sum of squared
deviations between points in different clusters

(between-cluster sum of squares, BCSS)
(Kriegel 2017).

k-means clustering, or Lloyd’s algorithm, is an
iterative, data-partitioning algorithm that assigns
1 observations to exactly one of k clusters
defined by centroids, where & is chosen before
the algorithm starts. The algorithm proceeds as
follows:
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J Choose k initial cluster centers
(centroid). For example, choose k observations
at random or use the k-means ++ algorithm for
cluster center initialization (the default).

o Compute point-to-cluster-centroid
distances of all observations to each centroid

o There are two ways to proceed: (1)
Batch update - assign each observation to the
cluster with the closest centroid, (2) Online
update - individually assign observations to

a different centroid if the reassignment decreases
the sum of the within-cluster, sum-of-squares
point-to-cluster-centroid distances.

o Compute the average of the
observations in each cluster to obtain k new
centroid locations.

J Repeat steps 2 through 4 until cluster
assignments do not change, or the maximum
number of iterations is reached.

k-means++ improves the running time of
Lloyd’s algorithm, and the quality of the final
solution. The k-meanst+ algorithm chooses
seeds as follows, assuming the number of
clusters is k.

. Select an observation uniformly at
random from the data set, x. The chosen
observation is the first centroid and is denoted
C,.

. Compute  distances  from  each
observation to €. Denote the distance between

€, and the observation m as d{x,mﬂ'}-}.

J Select the next centroid, €, at random
from x with probability
p— & Umb) )

- I d? ':I;-f-'l I

J To choose center j, we compute the
distances from each observation to each centroid
and assign each observation to its closest
centroid. For each m=1,...n and
p = 1....j— 1, select centroid j at random from
x with propabilit\y

p— ol -

— (6)

e )
E.rhE Lp a8 | xp )

where € o is the set of all observations closest to
centroid €, and x,, belongs to £,.

. Repeat step 4 until k centroids are
chosen.

The algorithms use atwo-phase iterative
algorithm to minimize the sum of point-to-
centroid distances, summed over all k clusters. 1.
This first phase uses batch updates, where each
iteration consists of reassigning points to their
nearest cluster centroid, all at once, followed by
recalculation of cluster centroids. This phase
occasionally does not converge with a solution
that is alocal minimum. That is, a partition of
the data where moving any single point to
a different cluster increases the total sum of
distances. This is more likely for small data sets.
The batch phase is fast, but potentially only
approximates a solution as a starting point for
the second phase. This second phase uses online
updates, where points are individually reassigned
if doing so reduces the sum of distances, and
cluster centroids are recomputed after each
reassignment. Each iteration during this phase
consists of one passing through all the points.
This phase converges to alocal minimum,
although there might be other local minimums
with lower total sum of distances. In general,
finding the global minimum is solved by an
exhaustive choice of starting points, but using
several replicates with random starting points
typically results in a solution that is a global
minimum

An important task in clustering is the correct
determination of the number of clusters. This
ensures that the data is properly and efficiently
divided. The correct choice of k is often
ambiguous, with interpretations depending on
the shape and scale of the distribution of points
in a data set and the desired clustering resolution
of the user. In addition, increasing k without
penalty will always reduce the amount of error in
the resulting clustering, to the extreme case of
zero error if each data point is considered its own
cluster (i.e., when k equals the number of data
points, n). Intuitively then, the optimal choice of
k will strike abalance between maximum
compression of the data using a single cluster,
and maximum accuracy by assigning each data
point to its own cluster. If an appropriate value
of k is not apparent from prior knowledge of the
properties of the data set, it must be chosen
somehow. There are several categories of
methods for making this decision. We use the
Calinski-Harabasz criterion. This criterion is
sometimes called the variance ratio criterion
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(VRC). The Calinski-Harabasz index is defined
as

VRC, = 28 .2=% (7

Al K- 7

where 55z is the overall between-
cluster variance, 55, is the overall within-
cluster variance k is the number of clusters, and
n is the number of observations. The overall
between-cluster variance 555 is defined as

555 = :'-:{:1 n; ”ml - m”:a (8)

where k is the number of clusters, n; is
the number of observations in i-th cluster, 1, is
the centroid of i-th cluster, sz is the overall mean
of the sample data. The overall within-cluster
variance 55, is defined

SSy =B, Dec: X —myll%, ©)

where k is the number of clusters, x is
adata point, C; is the i-th cluster, m; is the
centroid of i-th cluster. Well-defined clusters
have a large between-cluster variance (555) and
a small within-cluster variance (55;,,). The larger
the VR, ratio, the better the data partition. To
determine the optimal number of clusters,
maximize VR, with respect to k. The optimal
number of clusters corresponds to the solution
with the highest Calinski-Harabasz index value
(Calinski & Harabasz 1974).

Non-negative matrix factorization (NNMF),
also non-negative matrix approximation is
a group of algorithms in multivariate analysis
and linear algebra where a matrix ¥ is factorized
into (usually) two matrices W and H, with the
property that all three matrices have no negative
elements. This non-negativity makes the
resulting matrices easier to inspect. The
factorization uses an iterative algorithm starting
with random initial values for W and H. Because
the root means square residual I might have
local minima, repeated factorizations might yield
different W* and H. Sometimes the algorithm
converges to asolution of lower rank than f,
which can indicate that the result is not optimal.
More detailed information can be seen in
(Michael 2007).

3 FINDINGS

The results of the cluster analysis are divided
into three subcategories according to individual
subindexes, i.e. Basic, Efficiency and Innovation
according to NUTS-2 regions.

Basic sub-index cluster analysis of EU countries

The Basic sub-index includes five pillars: the
institutions, the macroeconomic stability, the
infrastructures, the health and the basic
education. That means we must analyse 234
vectors (number NUTS-2 regions) of dimension
5 (number of Basic sub-index pillars). First, we
must find the best number of clusters for this
analysis. Using MatLab function evalclusters,
which creates a clustering evaluation object
containing data used to evaluate the optimal
number of data clusters, we find that the best
number of clusters is 2 (see Figure 1). Higher
value of Calinski-Harabasz index means the
clusters are dense and well separated, although
there is no “acceptable” cut-off value. We need
to choose that solution which gives a peak or at
least an abrupt elbow on the line plot of
Calinski-Harabasz indices. The choice of only
two clusters is also suitable considering the
dendrogram (see Figure 2) where we can see
intermixture of clusters. In the next step (using
MatLab function kmeans), we sorted the data
into these two clusters and found their centroids.

The centroids characterizing the values of

institutions, macroeconomic stability,
infrastructures, health and basic education are
this four points

€, = [68.88 81.26,62.51,87.93, 85.16] and
C, = [134.50, 120.62, 107.96, 105.71,111.45].
For better further visualization, we chose
Nonnegative matrix factorization (NNMF) to
display the 5-dimensional space in the plane (see
Figure 3.). We see at least aseparation of
clusters, but a clear division into two groups with
better and worse ratings is evident. This division
is also visually obvious at map of EU (Figure 4),
where we can see division of the NUTS-2
regions of EU with dividing Europe by diagonal
running from south-west to north-east. Except
for the region of Central Bohemia and Prague
itself, the entire eastern block is part of the
cluster together with Greece and Italy, part of the
Iberian Peninsula.

Figure 1: Line-plot of Calinski-Harabasz values vs number of clusters for the Basic sub-index dataset of NUTS-2
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3 Figure 2: Dendrogram for the Basic sub-index dataset of NUTS-2 regions
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Figure 3: NNMF visualization for the Basic sub-index dataset of NUTS-2 regions
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Figure 4: The NUTS-2 maps of the Basic sub-index dataset for two clusters
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Efficiency sub-index cluster analysis of EU
countries

the labor market efficiency and the market size.
So, we have 234 vectors of dimension 3. If we
evaluate the number of clusters, we obtain the

The Efficiency sub-index includes three pillars: number of 4 clusters (sce Figure 5 also Figure 6).

higher education, training and lifelong learning,

Figure 5: Line-plot of Calinski-Harabasz values vs number of clusters for the Efficiency sub-index dataset of NUTS-2
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Figure 6: Dendrogram for the Efficiency sub-index dataset of NUTS-2 regions

8 Source: author’s processing from data of the European Commission's Directorate-General for Regional and

Urban Policy (DG REGIO)

The centroids of these four clusters, which
represent lifelong learning, the labor market and
the market size, are

C, =[107.95,111.89,111.54],
C,=[114.03, 116.10,207.33],

€, = [69.33,70.17, 33.60] and
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€, =[103.99,103.14,54.23]. If we transform vectors, the visualization can be seen on the
the obtained clusters into two-dimensional NNMF visualization (Figure 7).

Figure 7: NNMF visualization for the Efficiency sub-index dataset of NUTS-2 regions

350

" 1
= = " 2
300 " 3
4
||
| |
250 . .
L I
L -
200 " - 7
| |
n

150 -i. "
u gifem

100 ': ..d'l ;
50 k- :E.;“'ﬁ:i. u

9 Source: author’s processing from data of the European Commission's Directorate-General for Regional and

Urban Policy (DG REGIO)).

After drawing the clusters on the geographical elitism around the developed capital cities and
map, the categorization according to the regional their agglomerations, or cen-ters such as the
development in the north-south and east-west Ruhr, northern Italy, or the BENELUX countries
direction is obvious. And there is also a strong (Figure 8).

Figure 8: The NUTS-2 maps of the Efficiency sub-index dataset for four clusters
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vectors of dimension 3. If we draw the
dependence between the Calinski-Harabasz
values and the number of clusters, we see that
the highest value is for the basic division into
two clusters, but considering the elbow rule, we
can also choose the number of clusters 4 (see
Figure 9).

Innovation sub-index cluster analysis of EU
countries

Innovation sub-index includes the three pillars
that are the drivers of improvement at the most
advanced stage of economic development:
technological readiness, business sophistication
and innovation. That means we have also 234

Figure 9: Line-plot of Calinski-Harabasz values vs number of clusters for the Innovation sub-index dataset of NUTS-2
regions
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From the dendrogram also can be also seen that the best way to analyze this dataset is for number of
clusters 2 or 4 (see Figure 10).

Figure 10: Dendrogram for the Innovation sub-index dataset of NUTS-2 regions
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Using the MatLab function kmeans we get four technological readiness, business sophistication

clusters

with

their

centroids

(representing

and innovation) £, = [130.11, 127.75,131.84]
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€. =[88.18, 66.31, 60.00], visualize the resulted clustering in two-

€, = [93.65, 105.73, 97.14] and dimensional way (Figure 11). And now it is clear
€, =1[35.89, 20.05,39.03]. Using the that the choice of four clusters is better way than
Nonnegative matrix factorization, we can only dividing the dataset into two clusters.
Figure 11: NNMF visualization for the Innovation sub-index dataset of NUTS-2 regions
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The map of NUTS-2 region according to our
obtained clustering indexation for Innovation
pillars is very similar to the previous one for
Efficiency pillars. It means there can been seen
all the stereotypes about the rate of
innovativeness, e.g. more innovativeness western

Europe in contrast to the east Europe (Romania,
Bulgaria and easter regions of Poland), typical
centers of innovations as (BENELUX, Rubhr, the
capitals with their surroundings). Also, the
difference between the south and north of
Europe can be seen.

Figure 12: The NUTS-2 maps of the Innovations sub-index dataset for four clusters
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4 DISCUSSION

In our article, we analyzed individual
assessments of the level of competitiveness of
EU regions (NUTS-2) according to three basic
sub-indexes (Basic, Efficiency, Innovation). As
a starting point, we use the EU Regional
Competitiveness Index (RCI), whose individual
components (evaluation indices) we evaluated
using cluster analysis. We com-pared the
obtained categorizations with the regional
characteristics of the given regional territorial
unit.

The cluster analysis was conducted within the
MATLAB environment, utilizing the advanced
k-means++ algorithm. In addition to standard
clustering techniques, a notable feature of this
study is the application of Non-negative Matrix
Factorization (NNMF) for data visualization.
This method facilitates the transformation of
multidimensional matrices into a two-
dimensional space while preserving the
structural relationships between entities, thereby
significantly enhancing the clarity of the results.

CONCLUSION

This study successfully applied advanced cluster
analysis to the EU Regional Competitiveness
Index (RCI 2.0) to identify patterns of economic
development across 234 NUTS-2 regions. By
employing the k-means++ algorithm and
validating results through the Calinski-Harabasz
criterion, the research moved beyond simple
rankings to reveal distinct regional groupings
based on the three core sub-indices: Basic,
Efficiency, and Innovation.
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The analysis of the Basic sub-index revealed
a fundamental geographical divide in Europe,
separating more developed regions from an
"eastern bloc" that includes Greece, Italy, and
parts of the Iberian Peninsula. In contrast, the
Efficiency = and  Innovation  sub-indices
highlighted amore complex four-cluster
structure. These findings underscore a significant
"elitism" surrounding capital cities and major
industrial hubs like the Ruhr and BENELUX
countries, which consistently outperform their
peripheries.

Methodologically, the use of Non-negative
Matrix Factorization (NNMF) proved to be
ahighly effective tool for visualizing
multidimensional competitiveness data in a two-
dimensional space while preserving essential
Euclidean norms. Ultimately, these results
confirm that regional competitiveness in the EU
remains characterized by persistent north-south
and east-west disparities, as well as a stark
contrast between innovative urban centers and
stagnant rural regions. These insights are critical
for tailoring future Cohesion Policies to the
specific developmental needs of each identified
regional cluster.
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